MSG 128.405
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_7}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_7}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_4}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_4}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_2}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\varepsilon _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & c_1 & d_1 & e_1 & f_1 & g_1 & g_2 & g_4 & i_2 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 1 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 1 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 1 & 1 & 0 & 0 & -1 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccccccc}
\text{A}_1 & \text{A}_3 & \text{A}_4 & \text{A}_7 & \text{D}_1 & \text{D}_7 & \text{F}_3 & \text{F}_4 & a_1 & c_1 & g_1 & g_2 & g_4 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 & 1 & -1 & -1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & -1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccccc}
a_1 & c_1 & d_1 & e_1 & f_1 & g_1 & g_2 & g_4 & i_2 & \gamma _1 & \varepsilon _1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
\end{align*}
\]