MSG 134.474
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z}_2\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_6}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{F}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{F}_6}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{h_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{i_3}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & e_1 & e_2 & g_1 & g_3 & h_1 & i_1 & i_3 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & -1 & -2 & 1 & -1 & 2 & 1 \\
0 & -1 & 0 & 0 & -2 & 0 & 0 & 0 & 1 \\
0 & -1 & 0 & -2 & -2 & 0 & -1 & 4 & 1 \\
0 & -1 & 0 & -1 & -2 & 0 & -1 & 3 & 1 \\
0 & -1 & 0 & -1 & -2 & 0 & -1 & 2 & 2 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 2 & 0 \\
-1 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccccccc}
\text{A}_1 & \text{A}_2 & \text{A}_5 & \text{A}_6 & \text{B}_1 & \text{E}_1 & \text{F}_1 & \text{F}_2 & \text{F}_5 & \text{F}_6 & g_3 & h_1 & i_3 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\
0 & -2 & 1 & 1 & 0 & 0 & 0 & -2 & 1 & 1 & 2 & -2 & 2 \\
0 & -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 2 \\
0 & -2 & 0 & 0 & 0 & 1 & 0 & -4 & 1 & 1 & 0 & -2 & 2 \\
0 & -2 & 0 & 0 & 0 & 0 & 1 & -3 & 1 & 1 & 0 & -2 & 2 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & a_2 & e_1 & e_2 & g_1 & g_3 & h_1 & i_1 & i_3 \\
1 & -1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\end{array}
\right)
\end{align*}
\]