MSG 206.39
\[\begin{align*}
&E_{2}^{1,-1}=0\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_4}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_4}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccc}
a_1 & a_2 & c_3 & d_3 & e_1 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccc}
\text{A}_1 & \text{A}_3 & \text{A}_4 & \text{B}_1 & \text{B}_3 & \text{B}_4 & c_3 & d_3 \\
1 & 0 & -1 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccc}
a_1 & a_2 & c_3 & d_3 & e_1 & \alpha _1 & \gamma _1 \\
1 & 1 & 1 & 0 & -1 & 2 & -2 \\
0 & 0 & 0 & 1 & 1 & 0 & 2 \\
0 & -1 & -1 & 1 & 1 & -2 & 4 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2 \\
\end{array}
\right)
\end{align*}
\]