MSG 27.86
\[\begin{align*}
&E_{2}^{1,-1}=0\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_2}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_4}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _2}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccccccc}
a_1 & a_2 & b_1 & c_1 & e_1 & g_1 & g_2 & j_1 & j_2 & j_3 & j_4 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 2 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccc}
\text{A}_1 & \text{A}_2 & \text{B}_1 & \text{B}_2 & \text{F}_1 & \text{F}_2 & a_1 & a_2 & b_1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -2 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccccccccccc}
a_1 & a_2 & b_1 & c_1 & e_1 & g_1 & g_2 & j_1 & j_2 & j_3 & j_4 & \alpha _1 \\
1 & 1 & 1 & 0 & 0 & 0 & -2 & 0 & -1 & 0 & -1 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]