MSG 50.283
\[\begin{align*}
&E_{2}^{1,-1}=0\\
&E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_4}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{E}_4}]\\
&E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{k_2}]\\
&E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\zeta _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccccccccc}
a_1 & a_2 & b_1 & b_2 & e_1 & e_2 & f_1 & f_2 & i_1 & i_2 & k_1 & k_2 \\
1 & 1 & 0 & 0 & 0 & -2 & -1 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & -2 & 1 & 3 & 0 & 2 & -1 & -3 & -3 & -1 & 1 & 1 \\
0 & -2 & 0 & 2 & 1 & 1 & -1 & -1 & -2 & 0 & 1 & 1 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 1 & 1 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccc}
\text{A}_1 & \text{A}_2 & \text{A}_3 & \text{A}_4 & \text{E}_1 & \text{E}_2 & \text{E}_3 & \text{E}_4 \\
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{cccccccccccc}
a_1 & a_2 & b_1 & b_2 & e_1 & e_2 & f_1 & f_2 & i_1 & i_2 & k_1 & k_2 \\
1 & 1 & 0 & 0 & 0 & -2 & -1 & 1 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & -2 & 1 & 3 & 0 & 2 & -1 & -3 & -3 & -1 & 1 & 1 \\
0 & -2 & 0 & 2 & 1 & 1 & -1 & -1 & -2 & 0 & 1 & 1 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 1 & 1 \\
0 & -1 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]