MSG 96.146

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2^2\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\\ &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{f_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_4}]\\ &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\varepsilon _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccccccccc} a_1 & b_1 & c_1 & d_1 & f_1 & g_1 & g_2 & g_3 & g_4 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 0 & -1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & -1 & -1 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccccccccccccc} \text{A}_1 & \text{A}_2 & \text{B}_1 & \text{D}_1 & \text{D}_2 & \text{D}_3 & \text{F}_1 & a_1 & c_1 & g_1 & g_2 & g_3 & g_4 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{ccccccccccc} a_1 & b_1 & c_1 & d_1 & f_1 & g_1 & g_2 & g_3 & g_4 & \gamma _1 & \varepsilon _1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \\ \end{array} \right) \end{align*} \]