MSG 101.186

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_2\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_5}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{D}_5}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_5}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_5}]\\ &E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\gamma _2}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cccccc} a_1 & a_2 & c_1 & d_1 & g_5 & i_5 \\ 1 & 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & -1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{ccccccc} \text{A}_1 & \text{A}_2 & \text{A}_5 & \text{C}_5 & \text{D}_5 & \text{F}_5 & c_1 \\ 1 & 1 & 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{cccccc} a_1 & a_2 & c_1 & d_1 & g_5 & i_5 \\ 1 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]