MSG 120.323

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_4}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_4}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{h_1}]\\ &E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccc} a_2 & g_1 & h_1 \\ 1 & -1 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccc} \text{A}_3 & \text{A}_4 & \text{C}_3 & \text{C}_4 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{ccc} a_2 & g_1 & h_1 \\ 1 & -1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ \end{array} \right) \end{align*} \]