MSG 189.226

\[\begin{align*} &E_{2}^{1,-1}=0\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_6}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{B}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_6}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{h_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_3}]\\ &E_{1}^{2,-1}=\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\alpha _2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{cccccc} b_1 & b_2 & g_1 & g_3 & h_1 & i_3 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccccccccc} \text{A}_1 & \text{A}_2 & \text{A}_5 & \text{A}_6 & \text{B}_1 & \text{B}_2 & \text{C}_5 & \text{C}_6 & g_1 & h_1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{cccccc} b_1 & b_2 & g_1 & g_3 & h_1 & i_3 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ \end{array} \right) \end{align*} \]