MSG 33.147

\[\begin{align*} &E_{2}^{1,-1}=\mathbb{Z}_4\\ &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{B}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{H}_1}]\\ &E_{1}^{1,-1}=\mathbb{Z}[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{b_2}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{j_2}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{l_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{l_2}]\\ &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\varepsilon _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\zeta _1}] \end{align*}\]
\[\begin{align*} &[X^{(1)}]^{-1}=\left( \begin{array}{ccccccccc} a_1 & b_1 & b_2 & d_1 & e_1 & j_1 & j_2 & l_1 & l_2 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & -1 & -1 & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 & -2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ -1 & 0 & 0 & 0 & 4 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -2 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ \end{array} \right)\\ &[V^{(0)}]^{-1}=\left( \begin{array}{cccccccccc} \text{A}_1 & \text{B}_1 & \text{D}_1 & \text{D}_2 & \text{F}_1 & \text{F}_2 & \text{H}_1 & b_1 & b_2 & d_1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Lambda^{(0)}=\left( \begin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 \\ \end{array} \right)\\ &[V^{(1)}]^{-1}=\left( \begin{array}{cccccccccc} a_1 & b_1 & b_2 & d_1 & e_1 & j_1 & j_2 & l_1 & l_2 & \alpha _1 \\ 1 & 0 & 0 & 0 & -2 & -1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 2 & 1 & -1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} \right)\\ &\Sigma^{(1)}=\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right) \end{align*} \]