MSG 90.99
\[\begin{align*}
&E_{2}^{1,-1}=\mathbb{Z} \times \mathbb{Z}_2^3\\
&E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_4}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_3}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_4}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_3}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_4}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_3}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_4}]\\
&E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{g_2}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_1}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_2}]\\
&E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\gamma _1}]
\end{align*}\]
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{cccccccc}
a_1 & b_1 & d_1 & e_1 & g_1 & g_2 & i_1 & i_2 \\
0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & -1 & 0 & 0 & 0 & -1 \\
1 & -1 & 1 & 1 & 0 & -1 & 0 & -1 \\
0 & -1 & 0 & 1 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{cccccccccccc}
\text{A}_3 & \text{A}_4 & \text{C}_3 & \text{C}_4 & \text{D}_3 & \text{D}_4 & \text{F}_3 & \text{F}_4 & a_1 & d_1 & g_1 & g_2 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 2 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 1 & 1 & 1 & 1 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
a_1 & b_1 & d_1 & e_1 & g_1 & g_2 & i_1 & i_2 & \gamma _1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{c}
2 \\
\end{array}
\right)
\end{align*}
\]