MSG 105.217 
  
    \[\begin{align*}
    &E_{2}^{1,-1}=\mathbb{Z}_2\\
    &E_{1}^{0,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{A}_3}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{A}_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{C}_5}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(0)}_{\text{D}_5}]\oplus2\mathbb{Z}[\boldsymbol{b}^{(0)}_{\text{F}_5}]\\
    &E_{1}^{1,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{a_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{b_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{c_1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(1)}_{d_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{e_1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{g_5}]\oplus\mathbb{Z}[\boldsymbol{b}^{(1)}_{i_5}]\\
    &E_{1}^{2,-1}=\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\alpha _1}]\oplus\mathbb{Z}_2[\boldsymbol{b}^{(2)}_{\beta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _1}]\oplus\mathbb{Z}[\boldsymbol{b}^{(2)}_{\delta _2}]
    \end{align*}\]
  
  
\[\begin{align*}
&[X^{(1)}]^{-1}=\left(
\begin{array}{ccccccc}
 a_1 & b_1 & c_1 & d_1 & e_1 & g_5 & i_5 \\
 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
 \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
\end{array}
\right)\\
&[V^{(0)}]^{-1}=\left(
\begin{array}{ccccccccc}
 \text{A}_1 & \text{A}_3 & \text{A}_5 & \text{C}_5 & \text{D}_5 & \text{F}_5 & a_1 & c_1 & d_1 \\
 1 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\right)\\
&\Lambda^{(0)}=\left(
\begin{array}{cccccc}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 2 \\
\end{array}
\right)\\
&[V^{(1)}]^{-1}=\left(
\begin{array}{ccccccccc}
 a_1 & b_1 & c_1 & d_1 & e_1 & g_5 & i_5 & \alpha _1 & \beta _1 \\
 1 & 0 & 1 & 0 & 1 & 0 & -1 & 2 & 0 \\
 0 & 1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)\\
&\Sigma^{(1)}=\left(
\begin{array}{cccc}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 \\
\end{array}
\right)
\end{align*}
\]